54 research outputs found

    Resampled Priors for Variational Autoencoders

    Full text link
    We propose Learned Accept/Reject Sampling (LARS), a method for constructing richer priors using rejection sampling with a learned acceptance function. This work is motivated by recent analyses of the VAE objective, which pointed out that commonly used simple priors can lead to underfitting. As the distribution induced by LARS involves an intractable normalizing constant, we show how to estimate it and its gradients efficiently. We demonstrate that LARS priors improve VAE performance on several standard datasets both when they are learned jointly with the rest of the model and when they are fitted to a pretrained model. Finally, we show that LARS can be combined with existing methods for defining flexible priors for an additional boost in performance

    A Fast and Simple Algorithm for Training Neural Probabilistic Language Models

    Full text link
    In spite of their superior performance, neural probabilistic language models (NPLMs) remain far less widely used than n-gram models due to their notoriously long training times, which are measured in weeks even for moderately-sized datasets. Training NPLMs is computationally expensive because they are explicitly normalized, which leads to having to consider all words in the vocabulary when computing the log-likelihood gradients. We propose a fast and simple algorithm for training NPLMs based on noise-contrastive estimation, a newly introduced procedure for estimating unnormalized continuous distributions. We investigate the behaviour of the algorithm on the Penn Treebank corpus and show that it reduces the training times by more than an order of magnitude without affecting the quality of the resulting models. The algorithm is also more efficient and much more stable than importance sampling because it requires far fewer noise samples to perform well. We demonstrate the scalability of the proposed approach by training several neural language models on a 47M-word corpus with a 80K-word vocabulary, obtaining state-of-the-art results on the Microsoft Research Sentence Completion Challenge dataset.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Learning Item Trees for Probabilistic Modelling of Implicit Feedback

    Full text link
    User preferences for items can be inferred from either explicit feedback, such as item ratings, or implicit feedback, such as rental histories. Research in collaborative filtering has concentrated on explicit feedback, resulting in the development of accurate and scalable models. However, since explicit feedback is often difficult to collect it is important to develop effective models that take advantage of the more widely available implicit feedback. We introduce a probabilistic approach to collaborative filtering with implicit feedback based on modelling the user's item selection process. In the interests of scalability, we restrict our attention to tree-structured distributions over items and develop a principled and efficient algorithm for learning item trees from data. We also identify a problem with a widely used protocol for evaluating implicit feedback models and propose a way of addressing it using a small quantity of explicit feedback data.Comment: 8 page
    • …
    corecore